EUV Lithography for 22nm Half Pitch and Beyond: Exploring Resolution, LWR, and Sensitivity Tradeoffs

Steve Putna, Todd Younkin, Roman Caudillo, Terence Bacuita, Uday Shah, Michael Leeson, Manish Chandhok

2010 International Symposium on EUV Lithography

Purpose of Work

Develop a Fundamental Mechanistic
 Understanding that Enables Realization of HVM
 Capable ≤ 22nm Half Pitch EUV Litho Materials

Presentation Overview

Highlights

- On track to evaluate ~500 materials by end of year
- MET C-Dipole illumination enables internal 22 hp BM
- Chemically Amplified Resist viable option for ≤30 HP

Lowlights

- Resist only solution very challenging
- LWR, Collapse & 2D patterning need improvement

Intel MET

•EXPERIMENTAL:

- λ = 13.5 nm, 0.3 NA
- Low Flare ~ 3-6 %
- Field Size = 200 um x 600 um

•RELIABILITY:

• 90% uptime

•PRODUCTIVITY:

Cumulative dose delivery ↑

Resist Screening Strategy, Protocols

- Intel MET = Primary development tool
 - SEMATECH MET = Secondary capability
- Focus on 1D L/S pattern
 - 1D L/S characterization = 30/26 hp PW + ≤24 hp UR
 - Depth of Focus typically limited by LWR
- 2D Patterning Benchmarks well against 1D Metrics
 - Validates 1D methodology / figures of merit
 - 2D metrics for champ materials assessed regularly

Material Focus Areas

[1] LWR

- Physical / chemical LWR reduction techniques
- Novel organic / inorganic ancillary materials
- External / Internal Post Processing Demo's
- Reduced LWR Reticles

[2] Pattern Collapse

- Optimize Aspect Ratio / Surface Energy
- Increase Resist Modulus
- Reduce Developer / Rinse Surface Tension

Champion Resist Process + Dipole Illumination Enables 22nm HP Resolution

Quadrupole

On-axis dipole

22 nm HP

Minimum LWR = 4.3nm; Esize = 10.9mJ
With 275nm DOF

Data Taken on Intel MET with NA = 0.30

LWR Reduction via Post Processing

- Strategies
 - Mask
 - -Implant
 - -Cure
 - -Etch
 - Improved Tooling
 - Offsite Demonstrations
- Gap to Target / 2010 Goal
 - -22nm HP, 3.0nm LWR @ 11.3mJ Esize

Mask LWR Reduction

Improved process yields lower reticle LWR

Ion Implantation

Implant Condition	% CD Change	% LWR Change
Α	-11%	0%
В	-21%	0%
С	-11%	2%
D	-7%	2%
Е	-10%	2%
F	-8%	10%
G	-16%	-3%
Н	-18%	-15%
I	-11%	0%
J	-20%	-10%
K	-9%	-2%

Condition H provided highest 1D LWR reduction but CD shrinkage is observed

E-Beam Cure

EB Cure results in 20-25% CD + LWR Reduction

Bi-Layer Etch

Etch results in 15-20% LWR reduction with no CD Bias

Observe LWR improvement in move from MET → IMEC ADT

	26 nm HP	28 nm HP	30 nm HP	40 nm HP	50 nm HP
Intel MET					
Esize ~ 14.5 mJ/cm²					
LWR	6.9	4.8	4.9	4.6	4.1
IMEC ADT Esize ~ 13.0 mJ/cm ²					
LWR	5.9	4.6	3.6	3.1	2.4
	- 14 %	- 5 %	- 26 %	- 33 %	- 40 %

Conclusions

- On track to evaluate ~ 500 materials prior to EOY
- Intel MET dipole illumination enables internal 22 hp BM
- PC and LWR need continued improvement
- 2D Patterning BMs well against 1D Figures of Merit
- <16 nm HP Aerial Image Capability Needed Soon</p>

Intel EUVL Team

Todd Younkin (IMEC) Terence Bacuita James Blackwell (MAP) **Robert Bristol Roman Caudillo Manish Chandhok Armando Cobarrubia Kent Frasure Long He** Ted Liang **Guojing Zhang**

Michael Leeson Yashesh Shroff **Alan Myers** Seh-jin Park Bryan Rice (ISMT) **Jeanette Roberts James Ryan** Gil Vandentop **Pei-Yang Yan Edward Johnson** Wang Yueh

